Sampling Theory 101

•

Oliver Kreylos

kreylos@cs.ucdavis.edu

Center for Image Processing and Integrated Computing (CIPIC) Department of Computer Science

University of California, Davis

Outline

•

- Things that typically go wrong
- Mathematical model of sampling
- How to do things better

Things That Typically Go Wrong

•

Where Does Sampling Occur?

Almost all data we are dealing with is discrete

- Evaluation of sampled functions at arbitrary sites
- Volume rendering
- Isosurface extraction
- Ray tracing
- • •

What Went Wrong Here?

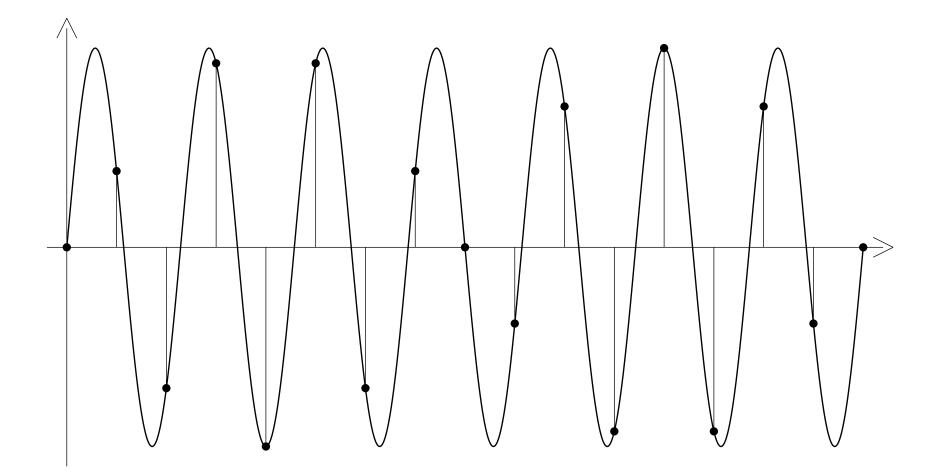
Typical ray tracing example:

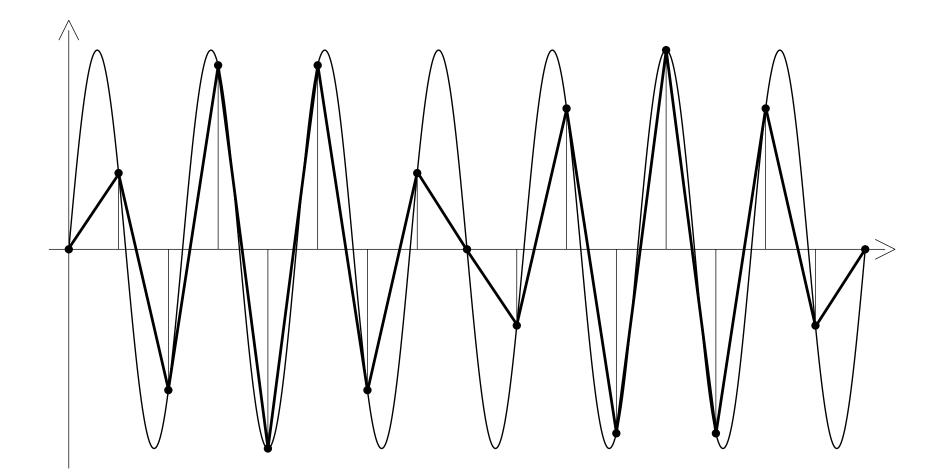


۲



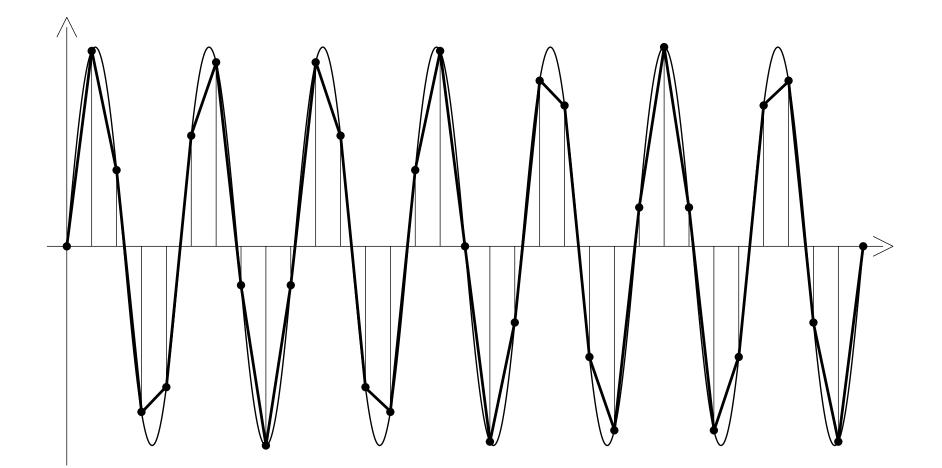
۲





• Undersampling?

- Sampling "below Nyquist rate"?
- Quick solution: Double sampling rate



- Things get better, but are still bad
- Isn't sampling above the Nyquist rate supposed to solve all problems?

Sampling Theory

۲

To understand what went wrong on the last slide, we need a mathematical model of sampling.

Mathematical Model of Sampling

•

Choice of Domain

- Process of sampling and reconstruction is best understood in frequency domain
- Use Fourier transform to switch between time and frequency domains
- Function in time domain: *signal*
- Function in frequency domain: spectrum

Fourier Transform I

۲

- Many functions $f: \mathbf{R} \to \mathbf{R}$ can be written as sums of sine waves

$$f(x) = \sum_{\omega} a_{\omega} \sin(\omega x + \theta_{\omega})$$

- $\omega = 2\pi \cdot frequency$ is angular velocity,
- a_{ω} is amplitude, and
- θ_{ω} is phase shift

Fourier Transform II

Moving to complex numbers simplifies notation:

$$\cos(\omega x) + i\sin(\omega x) = e^{i\omega x}$$

(Euler identity)

- One complex coefficient $c_{\omega}e^{i\omega x}$ encodes both amplitude and phase shift
- Moving to integral enlarges class of representable functions

Fourier Transform III

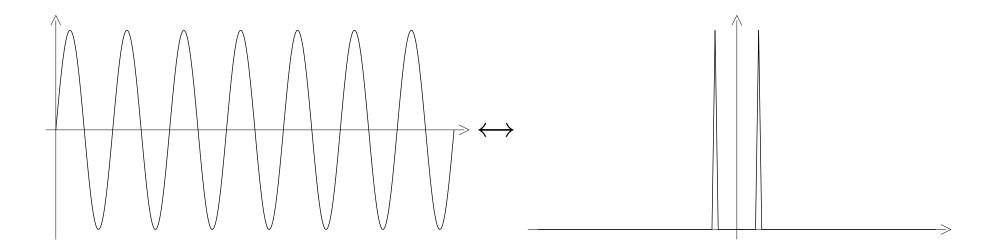
• Now, for almost all f:

$$f(x) = \int F(\omega) e^{i\omega x} \,\mathrm{d}\omega$$

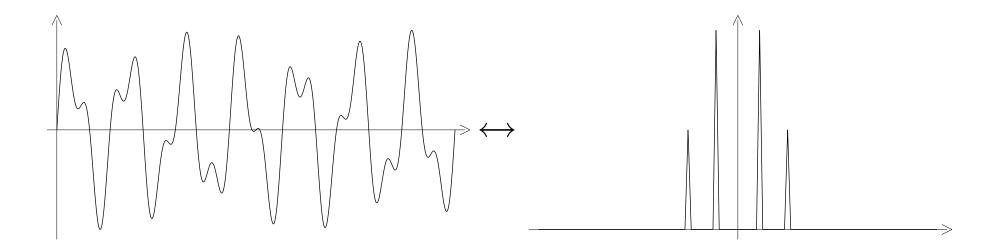
- $F(\omega)$ is the spectrum of f(x), and the above operator is the *inverse Fourier transform*
- Its inverse, the Fourier transform, is

$$F(\omega) = \int f(x)e^{-i\omega x} \,\mathrm{d}x$$

Single sine wave $f(x) = \sin(\omega x)$:

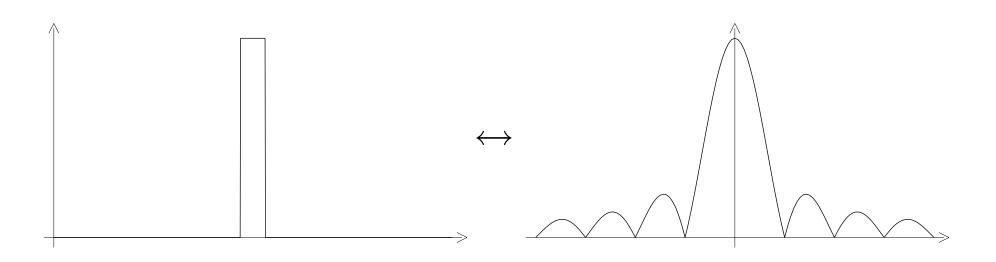


Sum of two sine waves $f(x) = \sin(\omega x) + 0.5 \sin(2\omega x)$:

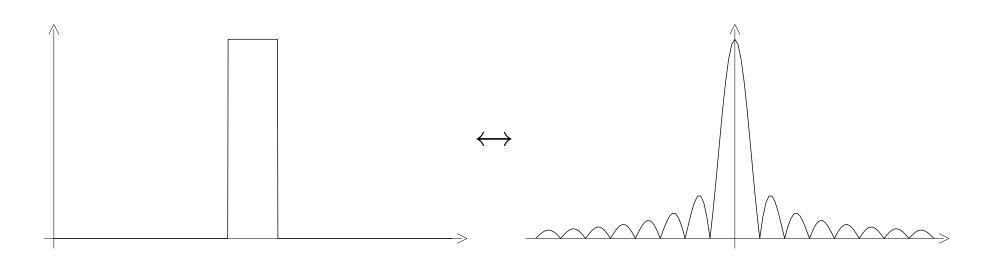


Box function:

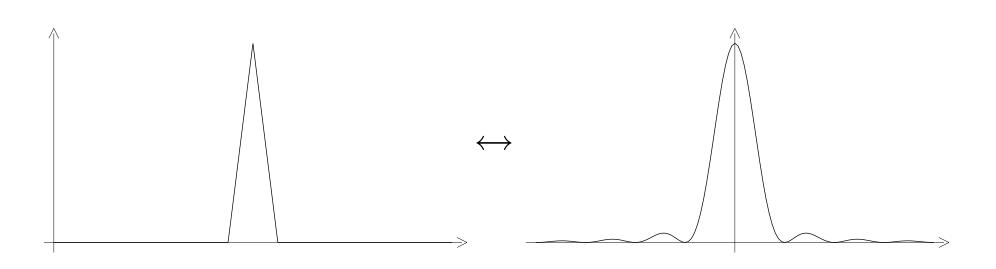
۲



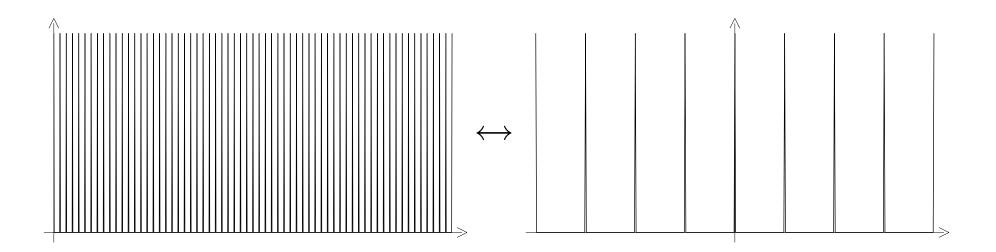
Wider box function:



Triangle function:

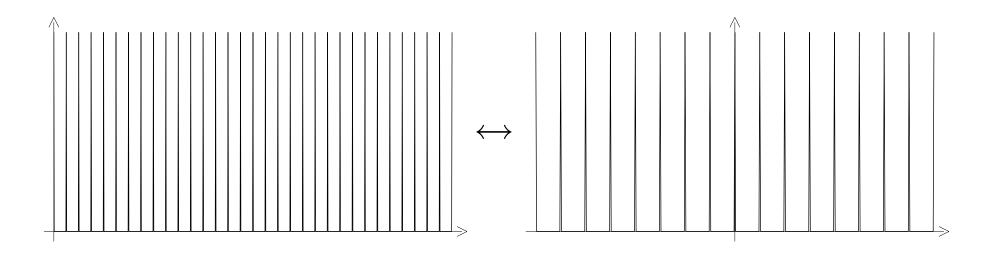


Comb function:



Wider comb function:

•



Convolution I

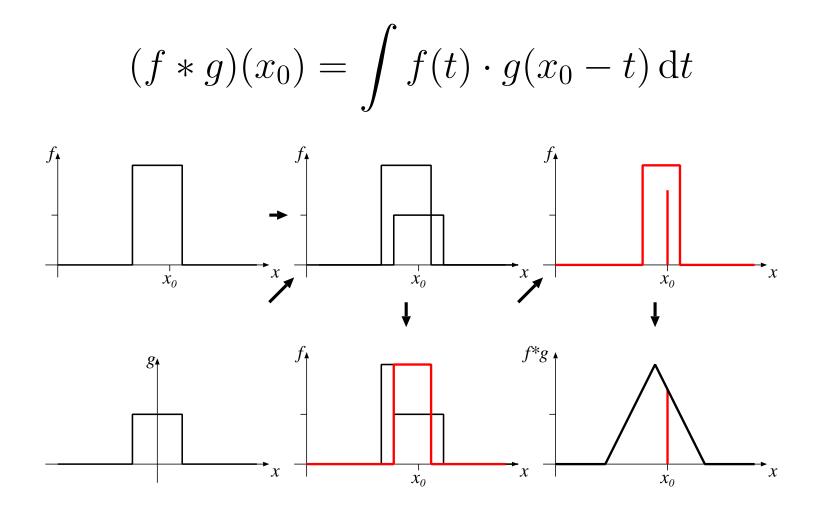
• The *convolution operator* is a generalized formula to express weighted averaging of an input signal *f* and a *weight function* or *filter kernel g*:

$$(f * g)(x) = \int f(t) \cdot g(x - t) \, \mathrm{d}t$$

One important application of convolution is reconstructing sampled signals

Convolution II

۲

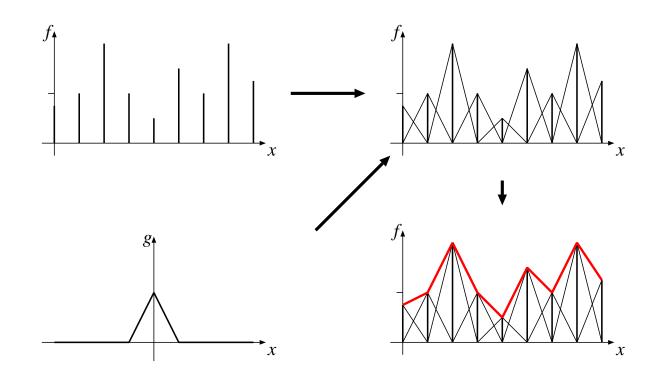


CIPIC Seminar 11/06/02 – p.15

Convolution III

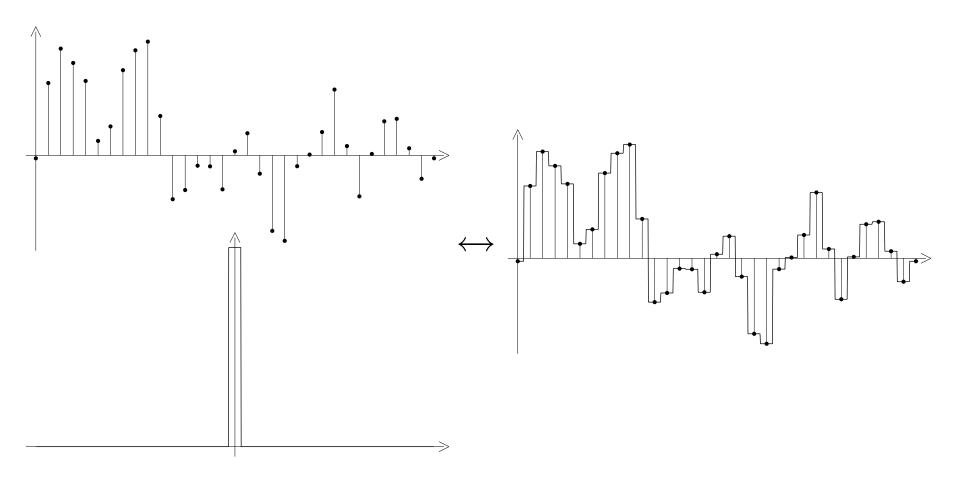
۲

Linear interpolation can be interpreted as convolution:



Constant interpolation:

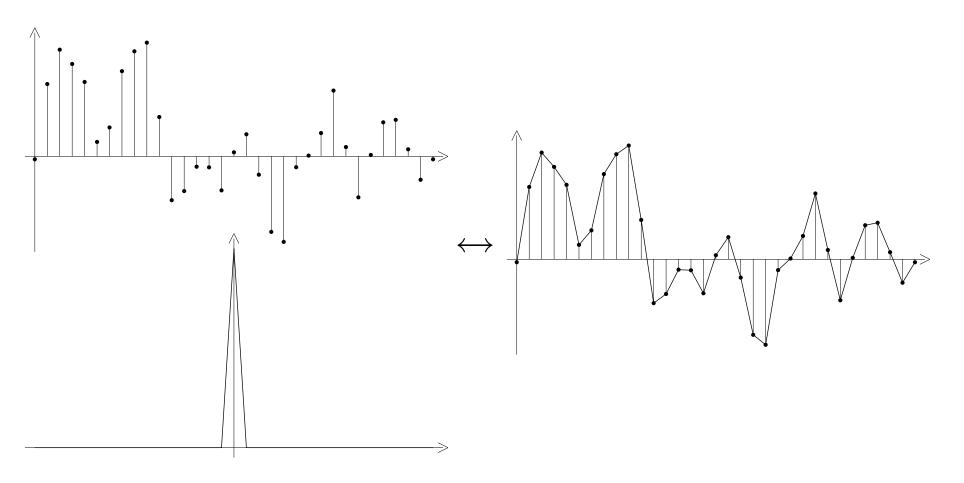
۲



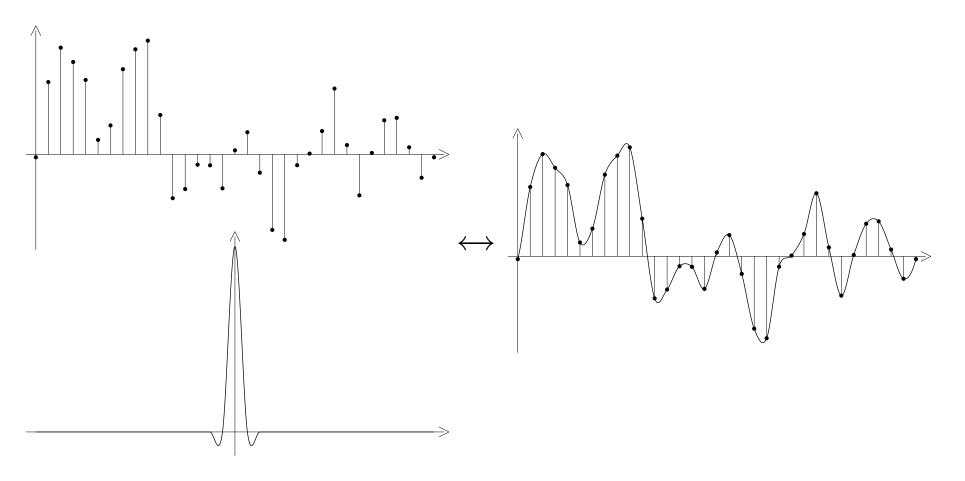
CIPIC Seminar 11/06/02 - p.17

Linear interpolation:

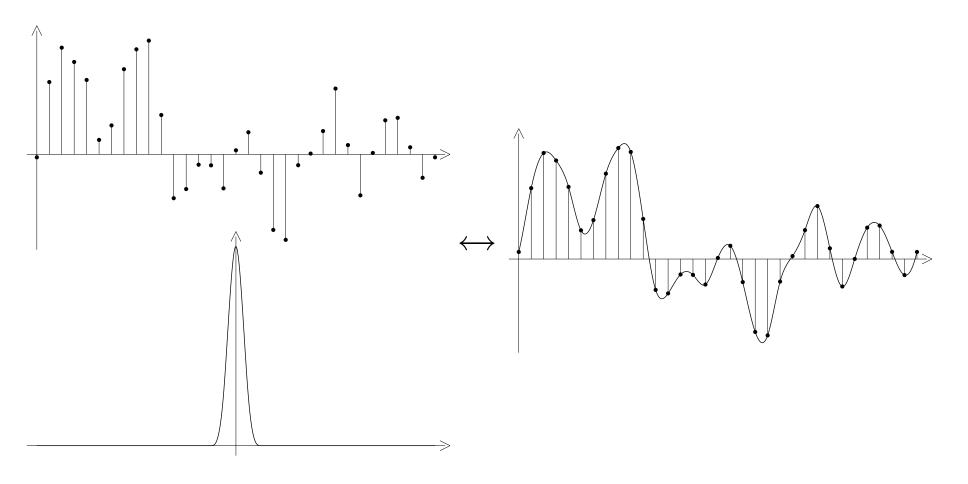
۲



Catmull-Rom interpolation:



Cubic B-spline approximation:



The Convolution Theorem

 The Convolution Theorem relates convolution and Fourier transform:

 $(f * g) \leftrightarrow F \cdot G$

 Convolutions can be computed by going through the frequency domain:

$$(f * g) = \operatorname{IFT}(\operatorname{FT}(f) \cdot \operatorname{FT}(g))$$

Sampling in Time Domain

• Sampling a function f means multiplying it with a comb function c with tap distance d (or sample frequency $\omega = 2\pi/d$):

$$s = f \cdot c$$

 Reconstructing a sampled function means convolving it with a suitable filter kernel

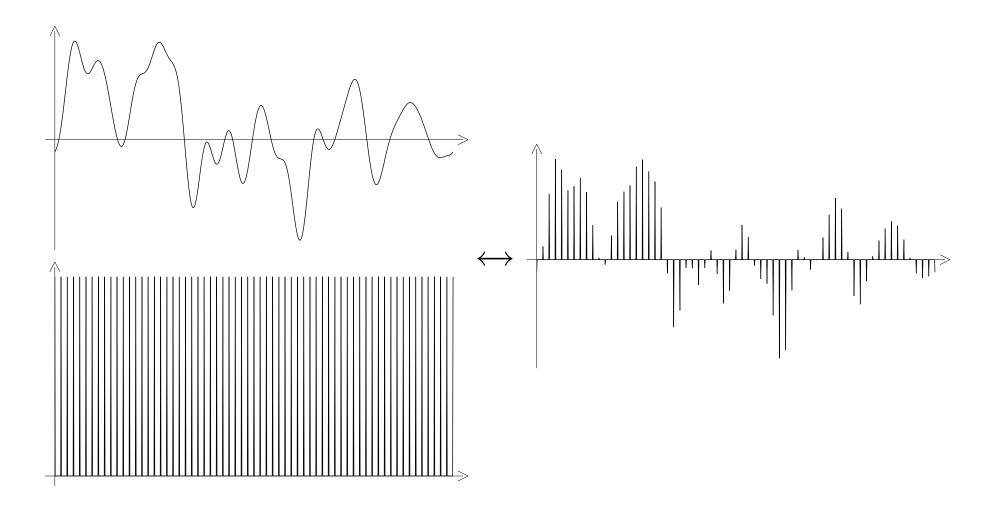
$$f' = s * k$$

 What happens to the function's spectrum in the process?

Sampling in Frequency Domain

- The spectrum of s is the convolution of F and C, the spectra of f and c
- C is a comb function with tap distance $2\pi/d$
- S consists of shifted copies of F, each $2\pi/d$ apart

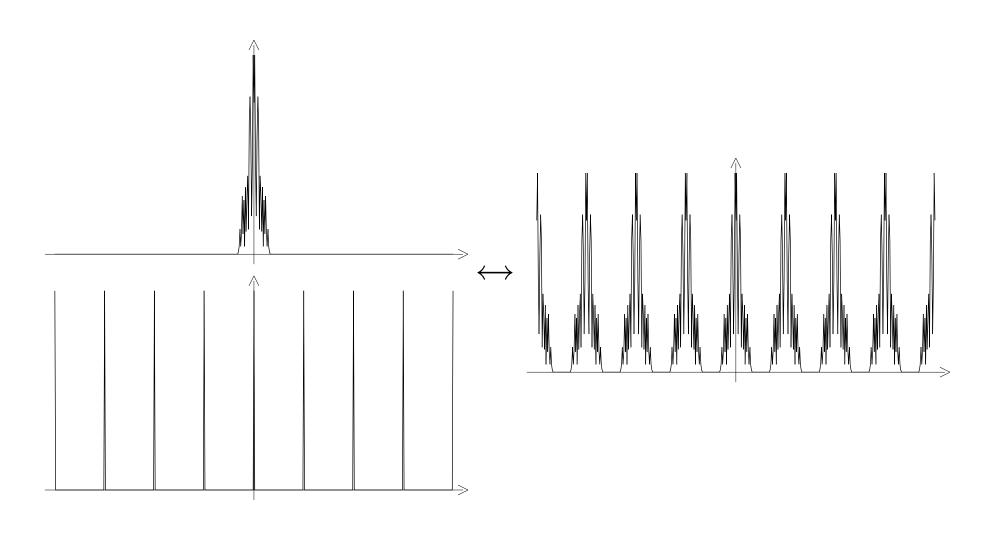
Sampling Process - Time Domain



CIPIC Seminar 11/06/02 - p.21

•

Sampling Process - Frequency Domain



CIPIC Seminar 11/06/02 – p.22

•

Sampling in Frequency Domain

- If the sampling frequency is ω , the replicated copies of *f*'s spectrum are ω apart
- If the highest-frequency component in f is ω_f , f's spectrum covers the interval $[-\omega_f, \omega_f]$
- If $\omega_f \ge \omega/2$, then the replicated spectra overlap!
- This means, information is lost

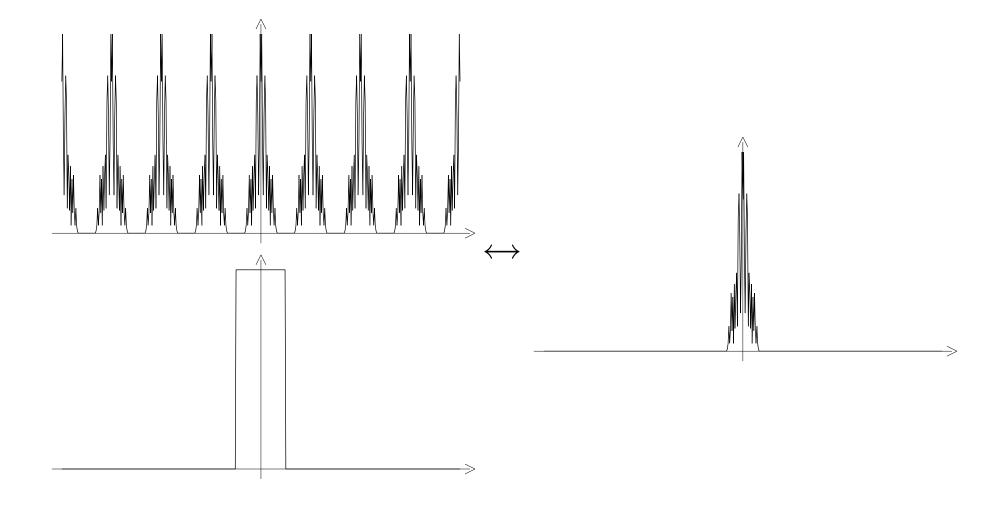
The Sampling Theorem

- "If f is a frequency-limited function with maximum frequency ω_f , then f must be sampled with a sampling frequency larger than $2\omega_f$ in order to be able to exactly reconstruct f from its samples."
- This theorem is sometimes called Shannon's Theorem
- $2\omega_f$ is sometimes called *Nyquist rate*

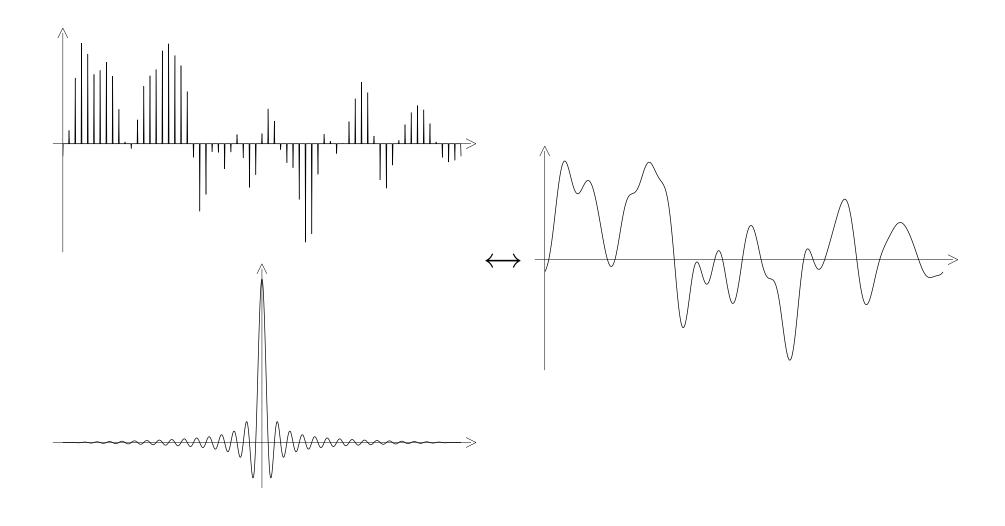
Reconstruction

- The only difference between *F* and *S* is that *S* is made of shifted copies of *F*
- If those extra, higher-frequency, spectra could be removed from S, f would "magically" reappear
- Reconstructing *f* means low-pass-filtering *s*!

Reconstruction Process - Frequency Do



Reconstruction Process - Time Domain

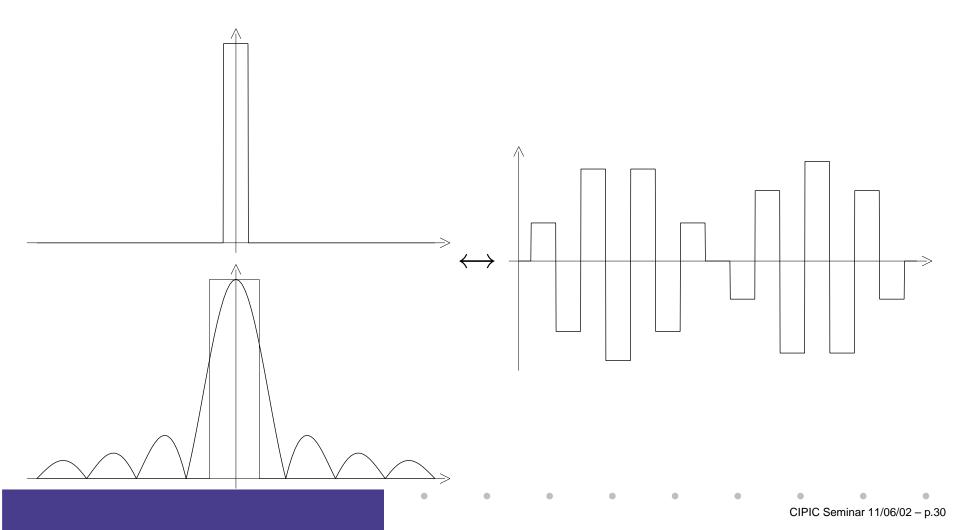


Reconstruction Problem

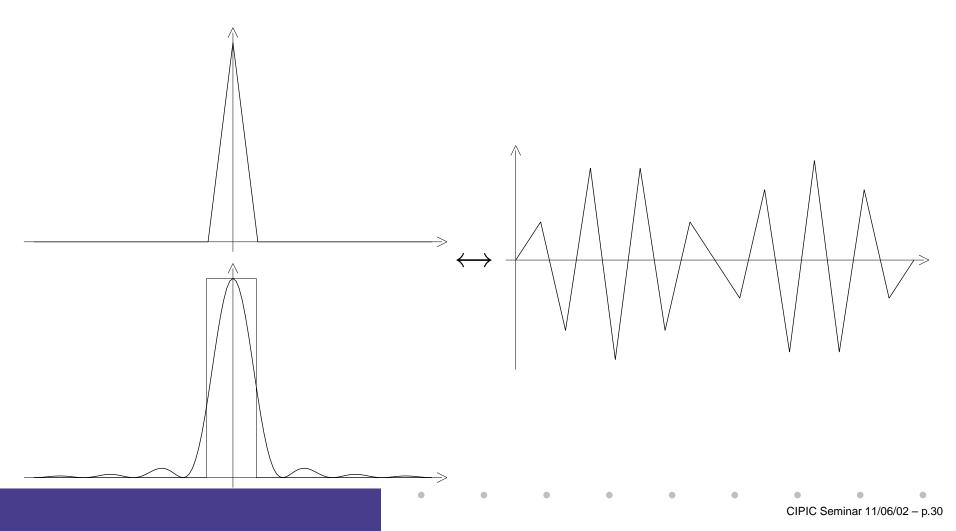
- Practical problem: The optimal reconstruction filter, the sinc function, has infinite support
- Evaluating it in the time domain involves computing a weighted average of infinitely many samples
- Practical reconstruction filters must have finite support
- But: A perfect low-pass filter with finite support does not exist!

The Quest For Better Filters

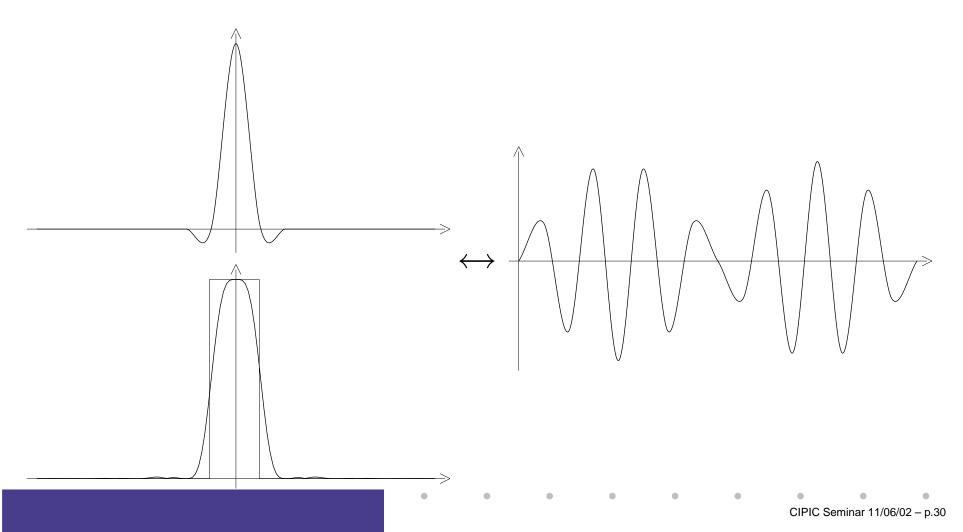
Constant filter:



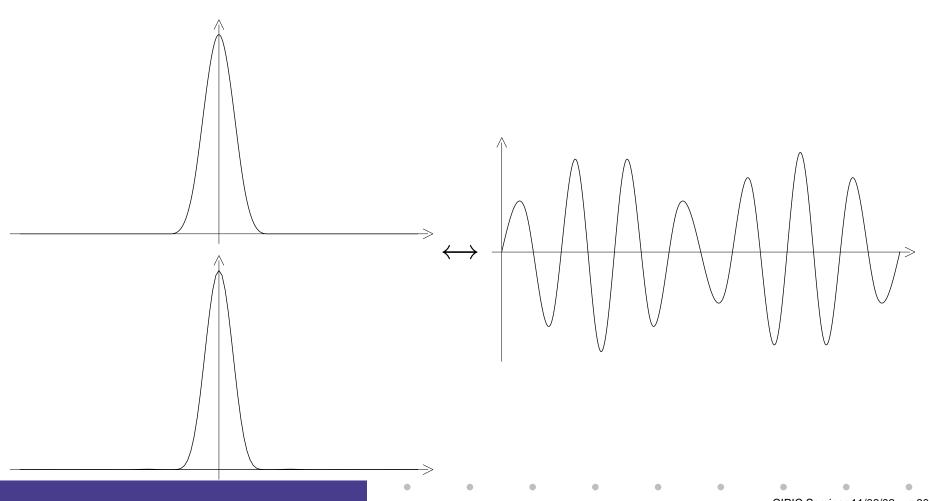
Linear filter:



Catmull-Rom filter:



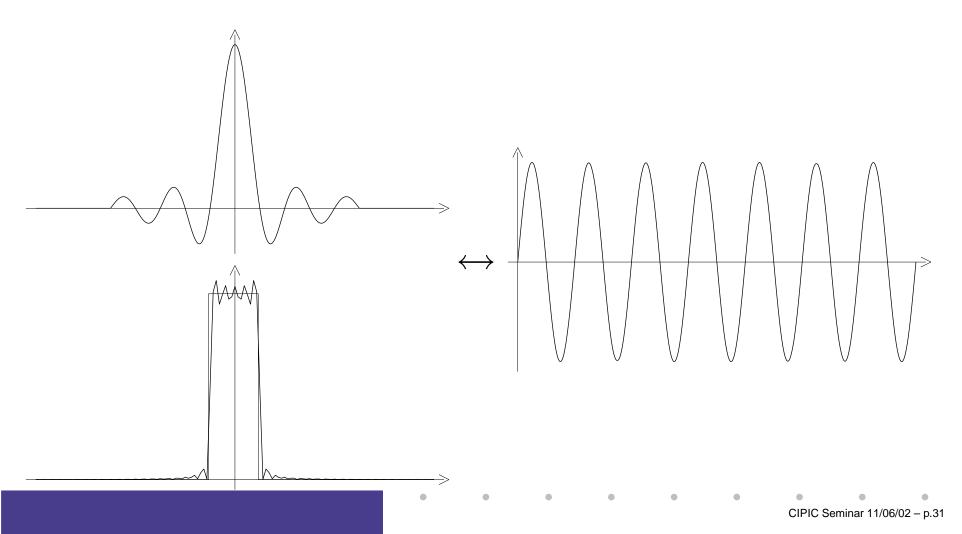
B-Spline filter:



CIPIC Seminar 11/06/02 - p.30

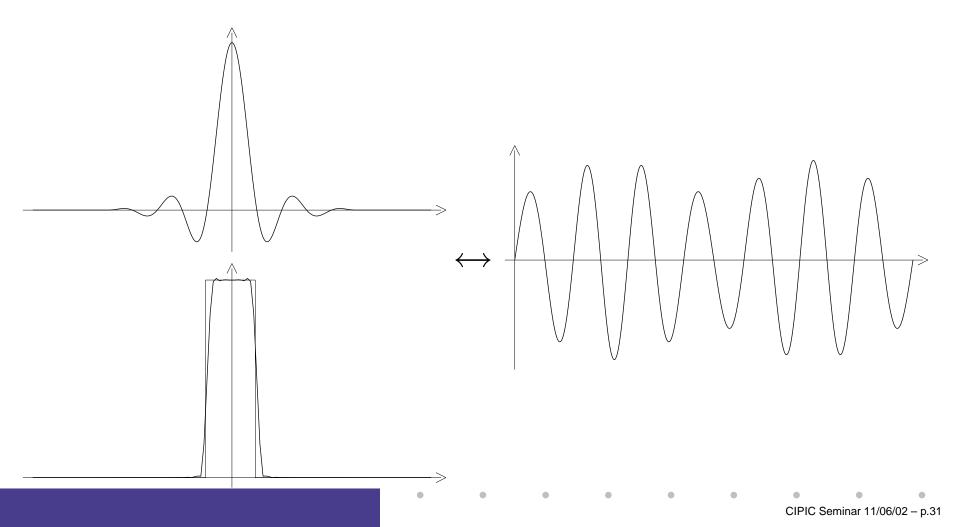
Sampling Theory Filters

Truncated sinc filter:



Sampling Theory Filters

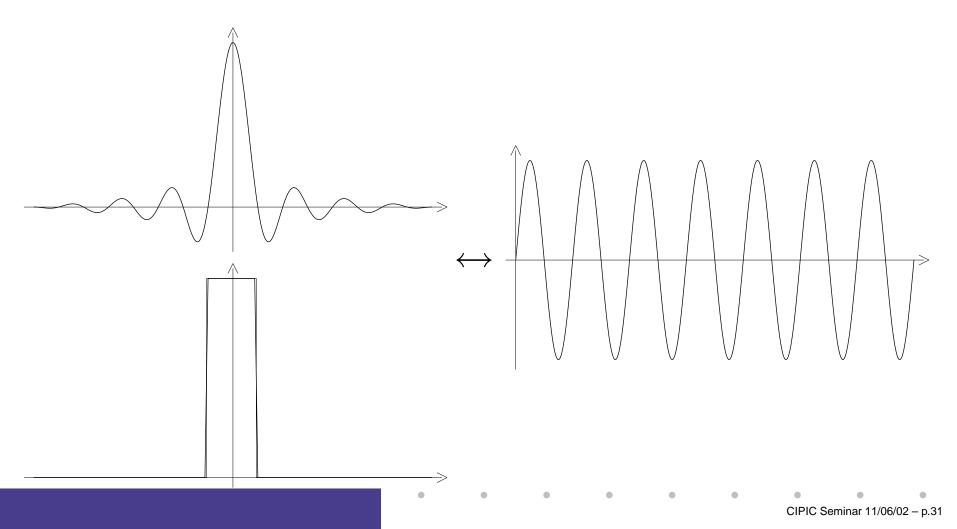
Lanczos filter:



Sampling Theory Filters

Full sinc filter:

•



Sampling Theory Applications

•

Function Reconstruction

- Sampling theory filters (Lanczos etc.) can be used to reconstruct n-dimensional functions sampled on regular grids
- Oversampling improves reconstruction quality with "bad" filters, but at a high cost

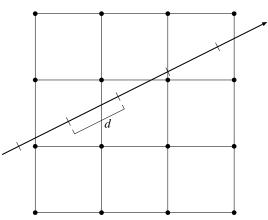
Function Resampling

- When resampling a sampled function to a different grid (shifted and/or scaled), it is important to use a good reconstruction filter
- When downsampling a function, it is important to use a good low-pass filter to cut off frequencies above half the new sampling frequency

Volume Rendering

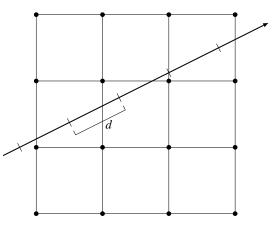
۲

 Basic question: How many samples to take per cell?



Volume Rendering

 Basic question: How many samples to take per cell?

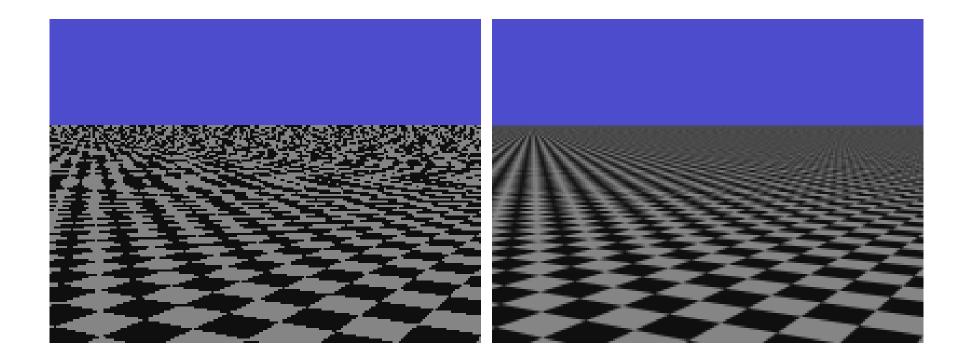


 Sampling theory says "1," but integration along ray might demand more

Ray Tracing

- In ray tracing, the function to be sampled is typically not frequency-limited
- Practical solution: Shoot multiple rays per pixel (oversampling) and sample down to image resolution
- Using a good low-pass filter is important

Ray Tracing



Conclusions

•

Conclusions

- Knowing the mathematical background of sampling and reconstruction helps to understand common problems and devise solutions
- Ad-hoc solutions usually do not work well
- This stuff should be taught in class!

The End

•